国产日韩精品一区二区_欧美一级片在线播放_久久精品中文字幕电影_久久视频精品在线_亚洲国产成人久久综合一区_久久精品国产精品_国产视频精品免费播放_在线视频中文亚洲_亚洲午夜未满十八勿入免费观看全集_精品亚洲一区二区_国产原创欧美精品_国产色综合天天综合网_九九久久国产精品_欧美极品少妇xxxxⅹ裸体艺术_亚洲国产精品人人爽夜夜爽_尤物九九久久国产精品的分类

卓世科技榮膺甲子光年“2025中國AI Agent領域最具商業潛力榜”2030年中國具身智能機器人市場規模將達770億美元2025 GDTC全球數據技術大會將于12月17日盛大開幕卡薩帝、西門子、博世“同臺競技”:內卷時代,誰能突圍?CFCA數字證書應用綜合解決方案,讓財務公司數字化轉型更安全CFCA亮相銀聯全球合作伙伴大會 以安全基石鑄就信任橋梁直擊網絡支付潛在風險,CFCA第三方支付安全解決方案賦能行業安全合規發展消息稱 realme 真我 16 Pro 系列手機有望明年1月6日發布,Pro+ 版本預計配備潛望長焦豆包踢開Agent大門,但微信說不定先進門聯想想幫幫AI服務智能體:舊手機去哪里以舊換新現在有答案了摩爾線程:將發布新一代GPU架構,并設立“摩爾學院”2025數智科技生態大會:亞信科技與中國電信“數智同行、智惠共榮”上海交大發布全球首個光子芯片垂直大模型 LightSeek,研發效率提升7倍消息稱華為2012實驗室成立基礎大模型部,加速布局AI底層技術無需眼鏡,未來已來!這項中國黑科技實現了裸眼 3D 顯示首發即售罄!“豆包手機” 引發二手市場熱潮,價格翻倍!OPPO A6l發布:售價1799元 搭載六年長壽大電池余承東官宣:鴻蒙智行首款MPV命名為智界V9一家外企的向善力量2025企業家博鰲論壇丨數字金融安全發展大會暨數字金融聯合宣傳年年度活動成功舉行
  • 首頁 > 產經新聞頻道 > 創投報道

    初創公司即融資上億,「人造超級大腦」賽道為什么不是噱頭?

    2022年08月18日 15:32:41 來源:量子位 | 公眾號 QbitAI

      這不前陣子,馬斯克揚言已將大腦上傳到云端,并與虛擬版本進行交談。

      關于人造大腦這事兒,再次引發了熱議:

      人類是否能構建跟人腦一樣的機器腦?

      事實上這個問題,不光是理念,更已經是一種實踐方向——歸屬于類腦計算的范疇。作為下一代人工智能的“種子選手”,它有望打破傳統馮諾伊曼架構,引領新的計算變革。

      不過發展至今,類腦計算始終呈現出正負兩極的評價。

      一面是業內如火如荼的融資進展。據相關機構預測,2035年類腦計算的市場規模約200億美元。另一面則是腦機制研究不深入、沒法復刻出相仿的神經網絡等質疑。

      到底是口耳相傳的噱頭,還是實打實的硬科技突破?

      借著這一契機來盤一盤類腦計算到底什么來頭?

      什么是類腦計算

      與人工智能、機器學習類似,類腦計算目前沒有明確的定義。以至于有關它的英文表達,也不止一種:

      Brain-like Computing(仿腦計算);Brain-inspired Computing(腦啟發計算);Neuromorphic Computing(神經形態計算)……

      不過字面拆解來看,類腦計算就是借鑒生物大腦的信息處理機制,以此誕生的一種新型計算形態。

      與現有計算機相比,生物大腦(以人腦代表)有諸多優勢。中科院院士、浙大校長吳朝輝曾撰文,主要有以下幾點:

      功耗低,僅20瓦左右;

      容錯性強,即便少部分神經元死亡,對整體功能影響不大;

      并行處理信息;

      神經網絡可塑性好,可根據環境變化自主學習和進化。

      而以神經科學為導向、以大腦為模仿對象的類腦計算,既保留計算機本身優勢,又疊加了大腦處理機制的buff,比如低功耗、自主決策學習、并行處理等特點,自然成為引領新一代計算變革的種子選手。

      近年來,人工智能,尤其是深度學習取得了令人矚目的成果,在某些方面的表現甚至已經超越了人類。

      但與自然智能相比,深度學習在效率、功耗以及通用性上仍有一定的局限性,遠沒有達到真正意義上的智能程度。

      類腦計算另辟蹊徑,于是就成為科學家們的研究重點。

      但想要實現真正的類腦并非那么容易,即便上世紀末科學家們就已經開始探索。清華大學集成電路學院何虎教授將其形容為珠峰。誰也不清楚,哪一條路會攀上頂峰。

      目前,類腦計算大體可分成三種探索方向:

      模擬神經元結構和功能,簡單來說就是仿真真實大腦機理,進而探索大腦內部的“運作模式”。

      最新代表性進展來自北京智源人工智能研究院給出的“智能線蟲”——天寶1.0。

      它完整模擬出秀麗隱桿線蟲的神經系統——302個神經元,以及數千個連接,并為它構造了3D流體仿真環境。它可以在其中蠕動前行,并具備簡單趨利避害的能力。

      不過這種逆向工程——從生物體環境提取出抽象的數字模型,存在一定的局限性。

      一言以蔽之,就是生物大腦本身的復雜度。

      正如何虎教授所介紹:一方面,大腦環境過于復雜。抽象出的大腦模型,相當于只是簡化版。另一方面,結構和功能之間“有壁”。即便成功構建了大腦結構,距離真正實現其功能還有很長的路要走。

      這一路徑目前還停留在學研階段,在此就不進一步深入展開。

      核心來看剩下兩種路徑:模擬神經網絡以及開發新型電子設備。更通俗來講,即軟件算法層面,或硬件芯片層面上對大腦機制的模擬。

      為了便于理解,將類腦計算與當下主流的深度學習作為對比。

      先來看軟件算法層面,生物神經元是以脈沖的形式將信息傳遞到下一個神經元層,放在類腦計算的研究中,即演化為脈沖神經網絡SNN。

      SNN,相較于DNN,更忠實地模擬大腦神經元和連接電路,其信息載體為脈沖序列,有空間域和時間域兩個維度來傳遞信息,在中科院李國齊教授看來,SNN兼具生物合理性與計算高效性。

      △ SNN與DNN(ANN)的區別,圖源:智源社區《中科院李國齊:一文梳理類腦計算的前世今生》

      進一步的,北京理工大學楊旭博士分享了類腦算法與傳統算法模型之間的不同,核心有三個層面:

      連接方式不同,稀疏連接與全連接;

      驅動方式不同:事件驅動與數據驅動;

      學習方式不同:DNN是從大量數據中總結出規律,而SNN則是因果學習,自適應能力強。

      這也就導致SNN所表現出的功耗更低,效率更高以及自適應能力更強。

      但與此同時,也不免有人質疑SNN的有效性。

      因為關于SNN訓練,目前還面臨著諸多挑戰,包括脈沖神經元中復雜的時空動力過程、脈沖信息不可導、脈沖退化和訓練精度損失等,也就進一步導致當前尚未存在一種統一的、且公認有效的算法來訓練它。

      具體舉個例子,如楊旭博士所說,比如由于SNN中的脈沖不可微分,DNN中非常成熟的梯度下降法就沒法直接應用,但現在由于對大腦機制的理解還不夠,就找不到一個能和該方法同樣有效的訓練方法。

      處于同一境地的,還有類腦芯片。

      目前也沒有統一的技術方案(此處統一指代的是具有超低功耗的計算芯片)。

      世界上最早的一款類腦芯片,當屬于IBM于2011年研制出的兩個具有感知認知能力的硅芯片原型。

      隨后像英特爾、斯坦福、曼大、浙大、清華也都相應推出自己的芯片方案。

      2019年,第三代天機芯登上Nature封面,再度掀起對類腦芯片的熱議。芯片搭載在無人駕駛自行車上,實現了自主決策、實時視覺探測、自動避障等功能。

      除此之外,另外兩種趨勢也不容忽視。

      一種是類腦感知芯片,也叫做神經形態傳感器,即對類腦觸覺、視覺、聽覺等傳感器的研究,開發具有高時間分辨率、低延時、低功耗的新型傳感器,在機器人、物聯網等方面有應用價值。

      比如三星的動態視覺傳感器(DVS),配在數碼相機上就能捕捉2000幀的畫面,只消耗300毫瓦的電能。

      另一種則是材料的延伸,開發基于納米等新材料的芯片,比如像憶阻器、相變存儲器、電化學存儲器。

      可以感知到的是,兜兜轉轉近十年的類腦芯片,目前還市場標準還未統一,應用場景也多樣。更多芯片方案還處于自我更新迭代當中。

      算法如此,芯片如此,背后的核心原因其實也不難理解。

      一方面是理論知識不夠,受限于對大腦機制的了解;另一方面則是工程化難題,從理論落到實際。

      也正因此,類腦計算相關的質疑始終不少。

      甚至有人直言:噱頭而已。

      當前行業現狀如何?

      是不是真的噱頭,且來看當前的行業現狀。

      事實上,我們已經可以見到類腦計算商業化的身影。放眼全球,從2013年開始便有相關創企開始冒頭,國內則集中爆發于2017-2018年。

      據不完全統計,全球類腦企業公司已有20家左右,雖然融資輪次多集中于A輪,但各家公司拿到的融資金額少則千萬多則上億,甚至還出現了一家上市企業,來自法國的Brainchip。

      跟更多前沿產業一樣,有幾家是直接從相關大學或研究所的類腦研究成果中孵化而來,Brainchip在內包括Innatera、時識科技、靈汐科技、優智創芯等。

      △ 國外類腦企業代表

      △ 國內類腦企業代表

      從這些公司的技術路線上來看,主要有兩條路徑,恰好也是前面提到實現類腦智能的兩種解決思路。

      一是芯片優先,即在硬件層面上進行對大腦機制的模擬。目前大多數類腦企業都是這個思路。

      以優先上市的Brainchip為例,他們研發出了世界上第一款商用神經擬態處理器Akida,面向邊緣AI計算,去年10月開始量產。今年2月還與奔馳達成合作,用于座艙內的感知和識別。

      最新融資約4000萬元的荷蘭企業Innatera,去年推出了一款基于SNN的神經擬態加速器,主要用于語音識別、生命體征監測和雷達等。

      再比如專注于圖像和視頻領域的類腦企業PROPHESEE,通過模仿人眼和大腦的工作方式,開發出了一款類腦智能視覺處理器,能夠幫助提高自動駕駛、工業自動化、物聯網、安防以及AR/VR等領域的識別效率。

      國內方面的代表,比如時識科技,其產品既包括可達到0.1mW的超低功耗計算芯片,還包括可用于面部檢測、實時手勢識別、實時目標分類等視覺任務的各類動態視覺類腦感知芯片。

      做感知芯片的不算少,還包括專注類腦觸覺芯片的他山科技(該芯片于去年9月流片),專注類腦嗅覺芯片的中科類腦(主要用于火災預警等場景)等。

      靈汐科技的重點是異構融合類腦計算芯片,該類芯片只需12W功耗即可提供32Tops的INT8算力和6Tflops的FP16算力。

      ……

      這種以芯片優先的思路,最大好處是可以率先實現類腦的有效性,發揮它的低功耗優點?梢钥吹,目前這些產品已經大多落地于物聯網、邊緣計算等場景。

      不過,這種思路也有它的局限性。我們知道,市面上的每一種產品實際上都是工程落地的問題。

      但是在工程落地之前,要先把它最根本的物理原理理解清楚,變成算法,然后再去尋找最合適的工程方法,去做芯片,把它變成產品落地。

      也就是說,芯片其實是為算法服務的。于是乎產業界出現了另一種聲音:

      如果連一個有效的算法都沒有,相關的硬件和硬件加速又從何談起呢?

      這也恰好是第二種技術路線:以算法優先,然后再以算法定義芯片。

      事實上,這種方式并不陌生,早在人工智能浪潮開始時,就有一波AI公司走的這條路徑,比如曠視、地平線、商湯等。

      因為用“算法定義硬件”,往往可以實現芯片性能的最大化。

      像深度學習加速器,就是“算法定義硬件”的典型,當傳統的芯片hold不住越來越快的新算法時,我們就通過優化算法來獲得計算資源需求和內存需求更小的新模型,讓芯片得以“適應”。

      這種優勢延伸到類腦領域,可以讓開發出來的類腦算法運行在普通的芯片架構上,讓傳統芯片也能擁有此前不具備的能力。

      因此,也有一些企業選擇了這條路。

      優智創芯,就是當前代表。

      這家公司主要解決的是深度學習中的不可解釋性問題,自研了基于SNN的可解釋因果學習算法系統(CLAS Causal Learning Algorithm System)。

      該系統下的因果學習算法最大的特點就是像人腦一樣,在學習權值的調節過程中,會根據因果關系去決定權值該增加還是減少——

      從而做到并非單純地去模仿數據,而是去理解數據產生背后的具體過程是什么樣的。

      當然,最后還需要利用強化學習去加強每個因果過程(即前后神經元之間的連接關系)。

      在此,楊旭博士解釋道,通過模仿數據找規律的方式就是現在ANN的工作方式,這種網絡對數據樣本質量的要求非常高,而后者,在SNN上采取因果學習的方法,就沒有這種要求了,甚至可能只需小樣本就可以做到智能通用。

      “就像人類認貓認狗,我們只需要認識路邊的幾只就知道狗長什么樣,不需要把全世界的都看一遍。”

      對于因果學習的合理性,何虎教授則表示,我們這個世界本身就是一套因果系統,人類文明可以說就是靠著不斷去問為什么而往前發展的。就像學生,要真正學會解一道數學題,靠不求甚解地背過程是不可能的,還是需要知道每一步都是如何推理出來,即每一步的因果關系。

      那么因果學習系統能帶來的最大好處是什么呢?

      是決策,何虎教授表示。

      而優智創芯開發的這套因果學習算法一開始就瞄準的正是深度學習中的非完美信息決策問題(以自動駕駛為例,可能會出現的非完美信息就包括物體遮擋,道路交通標志不完整、不準確等情況)。

      因此,針對該類問題的經典場景之一——打撲克,該公司實現了首個基于SNN的斗地主AI——“智玩”。

      最終,“智玩”通過了107個人類個體樣本不嚴謹圖靈測試,擬人化程度超過80%,再經過人類個體樣本訓練,個性化程度達到了85%,勝率最高做到了49%,實現了“像人一樣玩游戲”的目標。

      除了“智玩”機器人,優智創芯還利用其自研的CLAS因果學習算法系統設計了類腦芯片。

      其中,旗艦類腦芯片“思辨1號”對標SpiNNaker,采用28nm工藝,主頻為2 GHz,支持RISC-V Vector 1.0指令集,同時支持AI加速(算力可達4TOPS)和類腦計算(SNN因果學習算法),單芯片同時最大可實現100萬個神經元運算的同時,功耗不高于2W,性能可以與英特爾Loihi2媲美。

      除此之外,優智創芯還構建出了基于CLAS因果學習算法系統和類腦芯片組成的整體解方案——“硅腦”全自主無人系統平臺。

      基于功耗小、成本低、具有可解釋性以及可以自主靈活決策的特點,該平臺聚焦在無人機、無人駕駛、機器人的應用,可以擴展到AIGC、元宇宙、腦科學研究等領域。

      由該平臺衍生出來的K50/K51型SFS全自主無人飛行系統(類腦計算盒子)直接掛載在無人機上即能夠實現未知地域且離線狀態下的全自主飛行任務,可以用于電力巡線、海岸、植被、軌道交通、礦山、消防等多場景全自主無人飛行巡查,也可用于軍事領域的武器突防等。

      以及衍生出來的C60型SDS全自主無人駕駛系統(類腦計算盒子),正在與多家車企合作驗證,相信不久的將來,就會出現正真意義上的L4+級別無人駕駛汽車在城市中自由穿梭。

      市場規模將達200億美元

      綜上,我們可以看到,類腦計算并非“束之高閣”,而是已經走出實驗室,開始了商業化的摸索。

      據Yole Development預測,2035年類腦計算市場將占人工智能總收入的15%-20%,市場規模將達到 200億美元。

      雖然目前領域還處于發展的早期,面臨著諸多待解難題,但已經顯現出了勢不可擋的趨勢。我們認為理由有三。

      首先,縱觀人工智能發展的歷史,從ANN到DNN,其實都是基于對大腦的模仿。

      比如2016年擊敗圍棋世界冠軍李世石的AlphaGo,作為一個深度學習神經網絡,它所利用的多層訓練法就借鑒了一項認知科學的研究結果:

      人們認識事物并不是通過直接分析,而是依靠一種逐層抽象的認知機制,即首先學習簡單的概念,然后用它們去表示更抽象的。

      △ 基于深度學習的圖像識別過程中的逐層抽象過程

      這種借鑒造就了AlphaGo的成功。

      當然,諸如AlphaGo此類DNN都還是對大腦功能相對簡單和抽象的模仿,存在著各種局限性。

      第三代神經網絡SNN由此誕生,除了神經元和突觸狀態之外,SNN還將時間概念納入其中,實現了更高級的大腦生物神經模擬水平,有望打破現有的神經網絡在功耗、算力、樣本數量和質量等方面的限制。

      因此,我們說,類腦計算不失一種順勢而為的科技發展趨勢。

      其次,要從當下最火熱的通用人工智能(AGI)說起。

      毫無疑問,現階段的一些AI技術已經可以在某些特定任務上打敗人類,但沒法在所有技能上勝出。

      這就像北京師范大學認知神經科學和學習國家重點實驗室研究員萬小紅博士等所說,人工智能更專業,自然智能更通用。

      更通用的強人工智能是AI發展的終極目標。就在一個多月之前,圖靈獎得主LeCun公布的未來十年研究計劃,就將AGI作為核心目標。

      由于人類智能的核心是大腦,模擬大腦的類腦計算也就成為了實現AGI的一大重要路徑。

      最后,再將目光聚焦到當下,可以說,我們從未像今天這樣需要新型計算機。

      調查顯示,全球每三四個月對于算力的需求就會翻一倍,這個增長速度已經遠超摩爾定律和Dennard縮放定律。

      但傳統馮·諾伊曼計算架構存算分立的設計,讓處理器即使再快也要等內存,算力根本無法得到提高。

      作為新型計算形態的一種,類腦計算芯片有望打破這一僵局。

      此外,值得一提的是,雖說目前人類對大腦的研究還遠不夠透徹,但北京理工大學楊旭博士和北京師范大學萬小紅博士——兩位一個來自計算機科學領域,一個來自認知神經科學,都一致認為:

      這并不會真正妨礙類腦計算向前發展。

      相反,他們都表示,AI技術的發展反過來還可以促進腦科學的研究,兩者其實是相互成就的關系。

      那么,等到真正的類腦時代來臨之時,它將會和傳統的人工智能技術并存,還是完全取代后者?又將會給人類社會帶來怎樣的變革?

      這無疑充滿了想象的空間。我們拭目以待。

      最后,結尾再拋給大家兩個開放問題:

      1、你認為類腦智能是否會產生意識?

      2、類腦智能是否會像生物大腦一樣也會產生遺忘?

      歡迎討論。

      參考文獻:

      [1]https://news.sciencenet.cn/htmlnews/2022/1/472375.shtm

      [2]https://www.sohu.com/a/424817554_129720

      [3]https://www.sgpjbg.com/info/25374.html

      [4]https://www.ahpst.net.cn/News/show/18405.html

      [5]https://s3.i-micronews.com/uploads/2021/05/YINTR21214-Neuromorphic-Computing-and-Sensing-2021-Flyer.pdf

      [6]張臣雄 .《AI芯片:前沿技術與創新未來》

      文章內容僅供閱讀,不構成投資建議,請謹慎對待。投資者據此操作,風險自擔。

    海報生成中...

    最新新聞

    熱門新聞

    即時

    全球頂級AI創作社區回歸!海藝AI國內首發“全民娛樂化創作

    海藝AI的模型系統在國際市場上廣受好評,目前站內累計模型數超過80萬個,涵蓋寫實、二次元、插畫、設計、攝影、風格化圖像等多類型應用場景,基本覆蓋所有主流創作風格。

    新聞

    市場占比高達35.8%,阿里云引領中國AI云增長

    9月9日,國際權威市場調研機構英富曼(Omdia)發布了《中國AI云市場,1H25》報告。中國AI云市場阿里云占比8%位列第一。

    企業IT

    華為坤靈發布IdeaHub千行百業體驗官計劃,助力中小企

    9月24日,華為坤靈召開“智能體驗,一屏到位”華為IdeaHub千行百業體驗官計劃發布會。

    3C消費

    雅馬哈推出兩款高端頭戴耳機YH-4000與YH-C3000

    雅馬哈昨日宣布推出兩款頭戴式耳機,分別是平板振膜的YH-4000和動圈原理的YH-C3000。

    研究

    IDC:2025上半年全球智能家居清潔機器人出貨量同比暴

    IDC今日發布的《全球智能家居清潔機器人設備市場季度跟蹤報告,2025年第二季度》顯示,上半年全球智能家居清潔機器人市場出貨1,2萬臺,同比增長33%,顯示出品類強勁的市場需求。

    国产日韩精品一区二区_欧美一级片在线播放_久久精品中文字幕电影_久久视频精品在线_亚洲国产成人久久综合一区_久久精品国产精品_国产视频精品免费播放_在线视频中文亚洲_亚洲午夜未满十八勿入免费观看全集_精品亚洲一区二区_国产原创欧美精品_国产色综合天天综合网_九九久久国产精品_欧美极品少妇xxxxⅹ裸体艺术_亚洲国产精品人人爽夜夜爽_尤物九九久久国产精品的分类
    91jq激情在线观看| 欲香欲色天天天综合和网| 欧美日韩国产123| 日本亚洲不卡| 国产丝袜高跟一区| 国产一区二区三区免费| 六月丁香婷婷色狠狠久久| 国产精品69精品一区二区三区| 欧洲精品在线观看| 亚洲精品国产精品国自产观看| 成人爽a毛片一区二区免费| 亚洲日本中文字幕免费在线不卡| 国产精品亚洲午夜一区二区三区| 久久久精品免费| 在线视频一区二区| 国产99久久久久| 欧美艳星brazzers| 国产一区二区三区美女| 亚洲欧美日韩视频二区| 国产精品美女黄网| 国产精品成人在线| 国产精品久久久亚洲一区| 91探花在线观看| 黄色av电影在线播放| 亚洲免费av片| 懂色aⅴ精品一区二区三区| 九色porny丨入口在线| 97色在线播放视频| 国产69精品久久久久毛片| 国产一区二区三区视频在线观看| 国产蜜臀av在线播放| 国产精东传媒成人av电影| 中文字幕第一区第二区| 国产乱码精品一区二区三区五月婷| 欧美日韩精品一区视频| 欧美大片免费观看| 国产精品丝袜黑色高跟| 成人深夜视频在线观看| 国产国产一区| 国产一区二区在线电影| 欧美亚洲国产一区在线观看网站| 欧美性猛交xxxx免费看久久久| 在线日韩中文字幕| 狠狠操狠狠色综合网| 欧美日韩高清在线观看| 色综合视频二区偷拍在线| 蜜桃狠狠色伊人亚洲综合网站| 日本三级视频在线观看| 国产精品毛片a∨一区二区三区| 国产精品香蕉| 日韩中文字幕一区二区高清99| 欧美午夜www高清视频| 91精品在线麻豆| 成人午夜高潮视频| 精品一区二区三区自拍图片区| 亚洲深夜福利视频| 91麻豆免费在线观看| 午夜电影久久久| 动漫一区在线| 国产盗摄精品一区二区酒店| 欧美视频中文一区二区三区在线观看| 亚洲最大黄网| 久久影院在线观看| 日韩中文在线播放| 按摩亚洲人久久| 亚洲精品国产品国语在线app| 午夜天堂精品久久久久| 精品久久久av| 麻豆精品av| 国产一区二区三区高清| 日本中文字幕伦在线观看| 成人毛片av在线| 久久久一区二区三区捆绑**| 欧美精品一区二区三区久久久| 免费的黄网站在线观看| 欧美日韩免费看片| 99热这里只有成人精品国产| 久久成人福利| 久久久久久久av麻豆果冻| 自拍偷拍亚洲精品| 日韩av电影院| 欧洲成人免费aa| 91久久久久久久一区二区| 久久av中文字幕片| 精品亚洲男同gayvideo网站| 丰满大乳少妇在线观看网站| 涩涩屋成人免费视频软件| caopon在线免费视频| 一本大道久久a久久精二百| 国产亚洲精品久久久久久牛牛| 99久久er热在这里只有精品15| 欧美电影影音先锋| 成人久久18免费网站漫画| 日韩影视在线观看| 国产日韩欧美中文在线播放| 亚洲色图第三页| 亚洲主播在线播放| 日本欧美加勒比视频| 国产精品蜜臀在线观看| 日韩一区二区三区在线播放| 亚洲影视在线观看| 欧美激情一区二区久久久| 91精品国产成人www| 色综合中文网| 一区精品在线播放| 欧美性感一区二区三区| 91精品国产乱码| 久久视频国产精品免费视频在线| 欧美电影免费看| 99re6这里只有精品视频在线观看| 欧美精品人人做人人爱视频| 免费在线观看91| av在线电影免费观看| 欧美激情一区二区三区蜜桃视频| 九色|91porny| 国产伦精品一区二区三区照片91| 欧美videofree性高清杂交| 中文字幕 在线观看| 免费看成人片| 国产丝袜在线观看视频| 中文字幕一区日韩精品欧美| 日本精品一区二区三区在线| 欧美孕妇毛茸茸xxxx| 亚洲娇小xxxx欧美娇小| 69精品人人人人| 极品美鲍一区| 欧美韩国日本不卡| 亚洲福利一二三区| 亚洲xxxxx电影| 亚洲女优在线| y111111国产精品久久婷婷| 久久久久黄久久免费漫画| 白白在线精品| 欧美性受xxxx| 日韩av综合网站| 性感美女极品91精品| 污影院在线观看| 国产视频精品va久久久久久| 久久91亚洲精品中文字幕| 国产精品伦理| 欧美成人免费小视频| 91女神在线视频| 亚洲高清中文字幕| 91精品国产91久久久久久不卡| 欧美一区二区三区不卡| 日韩欧美国产一区在线观看| 日韩三级一区| 91国产丝袜在线放| 91美女片黄在线观看游戏| 国产精品国产精品国产专区不蜜| 久久爱www久久做| 999精品网| 大地资源中文在线观看免费版| 亚洲精品成人久久久998| 欧美亚洲视频一区二区| 蜜桃av.网站在线观看| 欧美成人一区二区三区电影| 91夜夜未满十八勿入爽爽影院| 99视频网站| 日韩美女在线观看一区| 日本免费一区二区视频| 亚洲小说区图片区都市| 韩国一区二区三区视频| 三妻四妾完整版在线观看电视剧|